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Abstract

Judicious partition problems on graphs and hypergraphs ask for partitions that optimize
several quantities simultaneously. Let G be a hypergraph with m1 edges of size i for i = 1, 2.
We show that for any integer k ≥ 1, V (G) admits a partition into k sets each containing at most
m1/k + m2/k2 + o(m2) edges, establishing a conjecture of Bollobás and Scott. We also prove
that V (G) admits a partition into k ≥ 3 sets, each meeting at least m1/k+m2/(k−1)+o(m2)
edges, which for large graphs implies a conjecture of Bollobás and Scott (the conjecture is for
all graphs). For k = 2, we prove that V (G) admits a partition into two sets each meeting at
least m1/2 + 3m2/4 + o(m2) edges, which solves a special case of a more general problem of
Bollobás and Scott.
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1 Introduction

Classical graph partition problems often ask for partitions of a graph that optimize a single
quantity. For example, the well-known Max-Cut Problem asks for a partition V1, V2 of V (G),
where G is a weighted graph, that maximizes the total weight of edges with an end in each Vi.
This problem is NP-hard, see [13]. The unweighted version is often called the Maximum Bipartite

Subgraph Problem: Given a graph G find a partition V1, V2 of V (G) that maximizes e(V1, V2), the
number of edges between V1 and V2. This is also NP-hard. However, it is easy to prove that any
graph with m edges has a partition V1, V2 with e(V1, V2) ≥ m/2. Edwards [10,11] improved this
lower bound to m/2+ 1

4 (
√

2m + 1/4− 1/2). This is best possible, as K2n+1 are extremal graphs.
In practice one often needs to find a partition of a given graph to optimize several quantities

simultaneously. Such problems are called Judicious Partition Problems by Bollobás and Scott [4].
One such example is the problem of finding a partition V1, V2 of the vertex set of a graph G that
minimizes max{e(V1), e(V2)}, where e(Vi) denotes the number of edges of G with both ends in Vi.
This problem is also known as the Bottleneck Bipartition Problem, raised by Entringer (see, for
example, [14,15]). Shahrokhi and Székely [16] showed that this problem is NP-hard. Porter [14]
proved that any graph with m edges has a partition into V1, V2 with e(Vi) ≤ m/4 + O(

√
m).

Bollobás and Scott [6] improved this to e(Vi) ≤ m/4 + 1
8 (
√

2m + 1/4 − 1/2), and showed that
K2n+1 are the only extremal graphs.

In fact, Bollobás and Scott [6] proved that any graph with m edges has a partition V1, V2 such
that e(V1, V2) ≥ m/2+ 1

4(
√

2m + 1/4−1/2) and for i = 1, 2, e(Vi) ≤ m/4+ 1
8 (
√

2m + 1/4−1/2).
Alon et al. [1] showed that there is a connection between the Maximum Bipartite Subgraph
Problem and the Bottleneck Bipartition Problem. More precisely, they proved the following: Let
G be a graph with m edges and largest cut of size m/2 + δ. If δ ≤ m/30 then V (G) admits a
partition V1, V2 such that e(Vi) ≤ m/4−δ/2+10δ2/m+3

√
m; and if δ ≥ m/30 then V (G) admits

a partition V1, V2 such that e(Vi) ≤ m/4 − m/100. It would be interesting to know whether this
result can be generalized to k-partitions.

One of the early problems about judicious partitions is the conjecture of Bollobás and Thoma-
son (see [3,5,7,8]) that if G is an r-uniform hypergraph with m edges then V (G) has a partition
into V1, . . . , Vr such that d(Vi) ≥ rm/(2r − 1) for i = 1, . . . , r, where d(Vi) denotes the number
of edges of G meeting Vi (i.e., contains at least one vertex of Vi). A natural approach to this
problem is to find a reasonable partition, and remove vertices of one set and try to partition the
remaining vertices into r − 1 parts in a better way. This approach is used in [7] by Bollobás and
Scott to partition 3-uniform hypergraphs.

In this paper, we study several judicious partition problems about graphs with requirement
on edges as well as on vertices, and such problems are called mixed partition problems. We follow
Bollobás and Scott [8] to use the term “hypergraphs with edges of size at most 2”.

We show in Section 2 that if G is a hypergraph with mi edges of size i, i = 1, 2, then
V (G) admits a partition V1, V2 such that d(Vi) ≥ m1/2 + 3m2/4 + o(m2) for i = 1, 2. This
settles a problem of Bollobás and Scott [8] for large graphs, where they suggest the lower bound
(m1−1)/2+2m2/3 as a starting point for a more general problem. Note that if we take a random
partition V1, V2, then E(d(Vi)) = m1/2 + 3m2/4.

In Section 3 we attempt to generalize the results in Section 2 to k-partitions. In particular,
we prove that if k ≥ 3 and G is a hypergraph with mi edges of size i, i = 1, 2, then V (G) admits
a partition V1, . . . , Vk such that d(Vi) ≥ m1/k + m2/(k − 1) + o(m2) for i = 1, . . . , k. Again, if
we take a random partition V1, . . . , Vk, then E(d(Vi)) = m1/k + (2k − 1)m2/k

2. Bollobás and
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Scott [7] conjectured that every graph with m edges has a partition into k sets, each meeting at
least 2m/(2k − 1) edges. Our result implies this conjecture for large graphs.

In Section 4 we consider a generalization of the Bottleneck Bipartition Problem. We show
that if k ≥ 1 and G is a hypergraph with mi edges of size i, i = 1, 2, then V (G) admits
a partition V1, . . . , Vk such that e(Vi) ≤ m1/k + m2/k

2 + o(m2) for i = 1, . . . , k, establishing
a conjecture of Bollobás and Scott [8]. Note that for a random partition V1, . . . , Vk, we have
E(e(Vi)) = m1/k + m2/k

2. Also when m1 = o(m2) this follows from equation (2) in [8].
The approach we take is similar to that of Bollobás and Scott [5]. We first partition a set

of large degree vertices, then establish a random process to partition the remaining vertices,
and finally apply a concentration inequality to bound the deviations. The key is to pick the
probabilities appropriately so that the expectation of the process will be in a range that we want.
This will be achieved by extremal techniques.

Some notation is in order. Let G be a hypergraph and S ⊆ V (G). We use G[S] to denote the
subgraph of G consisting of S and all edges of G contained in S. Let A,B be subsets of V (G)
or subgraphs of G, we use (A,B) denote the set of edges of G that are contained in A ∪ B and
intersect both A and B. For a set X ⊆ V (G) we use d(X) to denote the number of edges of G
meeting X, i.e., containing at least one member of X.

We will actually prove partition results for weighted graphs. Let G be a graph and let
w : V (G) ∪ E(G) → R+, where R+ is the set of nongentive reals. For X ⊆ V (G) we write

wG(X) =
∑

ui∈X

w(ui) +
∑

{e∈E(G): e⊆X}

w(e)

and
τG(X) =

∑

ui∈X

w(ui) +
∑

{e∈E(G): e∩X 6=∅}

w(e).

If G is understood, we use τ(X), w(X) instead of τG(X), wG(X), respectively. We point out that
if H is an induced subgraph of G, then for any X ⊆ V (H), we have wH(X) = wG(X). Also, note
that when w(e) = 1 for all e ∈ E(G) and w(v) = 0 for all v ∈ V (G), we have τ(X) = d(X).

2 Bipartitions

In this section we consider the following problem of Bollobás and Scott [8]: Given a hypergraph
G with mi edges of size i, 1 ≤ i ≤ 2, does there exist a partition of V (G) into sets V1 and V2 such
that d(Vi) ≥ m1−1

2 + 2
3m2 for i = 1, 2. This problem was motivated by the Bollobás-Thomason

conjecture on r-uniform hypergraphs. Bollobás and Scott [8] proved that if G is a hypergraph
with mi edges of size i, i = 1, . . . , k, then V (G) admits a partition V1, V2 such that for i = 1, 2,

d(Vi) ≥
m1 − 1

3
+

2m2

3
+ . . . +

kmk

k + 1
.

They then used this to show that every 3-uniform hypergraph with m edges can be partitioned
into 3-sets each of which meets at least 5m/9 edges.

In [7], Bollobás and Scott suggest that the following might hold: Given a hypergraph G with
mi edges of size i, 1 ≤ i ≤ k, there exists a partition of V (G) into sets V1, . . . , Vk such that for
i = 1, . . . , k,

d(Vi) ≥
m1 − 1

2
+

2m2

3
+ . . . +

kmk

k + 1
.
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In fact, they suggest in [8] that asymptotically the bound may be much larger:

d(Vi) ≥
m1

2
+

3

4
m2 + . . . +

(

1 − 1

2k

)

mk + o(m1 + . . . + mk).

In this section we confirm this for k = 2 (see Theorem 2.4). Note that by taking a random
partition V1, . . . , Vk, we have E(d(Vi)) = m1

2 + 3
4m2 + . . . +

(

1 − 1
2k

)

mk.
As mentioned in the previous section, we need a concentration inequality, the Azuma-Heoffding

inequality [2, 12], to bound deviations. We use the version given in [5].

Lemma 2.1 Let Z1, . . . , Zn be independent random variables taking values in {1, . . . , k}, let Z :=
(Z1, . . . , Zn), and let f : {1, . . . , k}n → N such that |f(Y )−f(Y ′)| ≤ ci for any Y, Y ′ ∈ {1, . . . , k}n

which differ only in the ith coordinate. Then for any z > 0,

P (f(Z) ≥ E(f(Z)) + z) ≤ exp

(

−z2

2
∑k

i=1 c2
i

)

,

P (f(Z) ≤ E(f(Z)) − z) ≤ exp

(

−z2

2
∑k

i=1 c2
i

)

.

We also need a simple lemma to be used to choose probabilities in a random process.

Lemma 2.2 Let a, b, n ∈ R+ with a + b > 0. Then there exists p ∈ [0, 1] such that

min{(n + b)p + a, (n + a)(1 − p) + b} ≥ n

2
+

3

4
(a + b).

Proof. Setting (n + b)p + a = (n + a)(1 − p) + b, we obtain

p =
n + b

2n + a + b
;

and hence

(n + b)p + a =
(n + b)2

2n + a + b
+ a.

Clearly p ∈ [0, 1]. It is straightforward to show that

(n + b)2

2n + a + b
+ a −

(

n

2
+

3

4
(a + b)

)

=
(a − b)2

4(2n + a + b)
≥ 0.

Hence, the assertion of the lemma holds.

Remark. We may take p =
n + b

2n + a + b
in Lemma 2.2.

We now prove the main result in this section. This is a partition result on weighted graphs.
Recall the notation τ(X) defined in the previous section.

Theorem 2.3 Let G be a graph with n vertices and m edges and let w : V (G)∪E(G) → R+ such

that w(e) > 0 for all e ∈ E(G). Let λ = max{w(x) : x ∈ V (G) ∪ E(G)}, w1 =
∑

v∈V (G) w(v),
and w2 =

∑

e∈E(G) w(e). Then there is a partition V (G) = X ∪ Y such that

min{τ(X), τ(Y )} ≥ 1

2
w1 +

3

4
w2 + λ · O(m4/5).
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Proof. We may assume that G is connected, since otherwise we may simply consider the individual
components. Let V (G) = {v1, v2, . . . , vn} such that d(v1) ≥ d(v2) ≥ · · · ≥ d(vn).

First, we need to deal with an appropriate number of vertices so that the remaining vertices
will have small degree (and hence will be useful when applying the Azuma-Hoeffding inequality
in Lemma 2.1). Since G is connected, n − 1 ≤ m < 1

2n2. Fix 0 < α < 1
2 (to be optimized later),

and let V1 = {v1, . . . , vt} such that t = ⌊mα⌋. (Note that, since α < 1/2 and m < 1
2n2, we have

t < n.) Then e(V1) ≤
(t
2

)

< 1
2t2 ≤ 1

2m2α. Since
∑t+1

i=1 d(vi) ≤ 2m, d(vt+1) ≤ 2m
t+1 ≤ 2m1−α.

Let V2 = V (G)\V1, and rename the vertices in V2 as {u1, u2, ..., un−t} such that e({ui}, V1 ∪
{u1, ..., ui−1}) > 0 for i = 1, . . . , n − t; which can be done since we assume that G is connected.

We now partition the vertices of G. First, fix a random partition V1 = X0∪Y0, and assign color
1 to all vertices in X0 and color 2 to all vertices in Y0. The vertices ui ∈ V2 are independently
colored 1 with probability pi, and 2 with probability 1 − pi. (The pi’s are constants to be
determined recursively.) Let Zi denote the indicator random variable of the event of coloring
ui. Hence Zi = j, j ∈ {1, 2}, iff ui is assigned the color j. When this process stops we obtain
a bipartition of V (G) into two sets X,Y , where X consists of all vertices with color 1 and Y
consists of all vertices of color 2 (and hence X0 ⊆ X and Y0 ⊆ Y ).

We need additional notation to facilitate the choices of pi (1 ≤ i ≤ n − t), the computations
of expectations of τ(X) and τ(Y ), and the estimations of concentration bounds. Let Gi =
G[V1 ∪ {u1, u2, ..., ui}] for i = 1, . . . , n− t, let G0 = G[V1], and let the elements of V (Gi) ∪E(Gi)
inherit their weights from G. Let x0 = τ(X0) and y0 = τ(Y0), and define, for i = 1, . . . , n − t,

Xi = {vertices of Gi with color 1},
Yi = {vertices of Gi with color 2},
xi = τGi

(Xi),

yi = τGi
(Yi),

∆xi = xi − xi−1,

∆yi = yi − yi−1,

ai =
∑

e∈(ui,Xi−1)

w(e),

bi =
∑

e∈(ui,Yi−1)

w(e).

Note that xi and yi are random variables determined by (Z1, Z2, . . . , Zi); and ai and bi are random
variables determined by (Z1, Z2, . . . , Zi−1). Thus,

E(∆xi|Z1, . . . , Zi−1) = pi(w(ui) + bi) + ai,

E(∆yi|Z1, . . . , Zi−1) = (1 − pi)(w(ui) + ai) + bi.
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Hence,

E(∆xi) = E (E(∆xi|Z1, . . . , Zi−1))

=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1) (pi(w(ui) + bi) + ai)

= pi



w(ui) +
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi



+
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai.

Similarly,

E(∆yi) = (1 − pi)



w(ui) +
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai



+
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi.

Let

αi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ai,

βi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)bi.

Then

E(∆xi) = pi(w(ui) + βi) + αi,

E(∆yi) = (1 − pi)(w(ui) + αi) + βi.

Note that αi, βi are determined by p1, . . . , pi−1, since ai and bi are determined by Z1, . . . , Zi−1.
Also note that ei := ai + bi =

∑

e∈(ui, Gi−1)
w(e) is the total weight of edges in (ui, V (Gi−1)),

which is independent of Z1, . . . , Zi−1 and is the same in both G and Gi. Further, ei > 0 by our
choice of ui and the assumption that w(e) > 0 for all e ∈ E(G). Hence,

αi + βi =
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)(ai + bi)

=
∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

= ei

> 0.

Let pi =
w(ui) + βi

2w(ui) + αi + βi
. Note that pi is recursively defined (by p1, . . . , pi−1), since αi and βi

are determined by p1, . . . , pi−1. It follows from Lemma 2.2 that pi ∈ [0, 1] and

min{E(∆xi), E(∆yi)} ≥ 1

2
w(ui) +

3

4
(αi + βi) =

1

2
w(ui) +

3

4
ei.
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We can now bound the expectations of xn−t and yn−t:

E(xn−t) = E(x0) +

n−t
∑

i=1

E(∆xi) ≥ E(x0) +
1

2

n−t
∑

i=1

w(ui) +
3

4

n−t
∑

i=1

ei,

E(yn−t) = E(y0) +

n−t
∑

i=1

E(∆yi) ≥ E(y0) +
1

2

n−t
∑

i=1

w(ui) +
3

4

n−t
∑

i=1

ei.

Let X = Xn−t and Y = Yn−t. Then X ∪ Y = V (G) and X ∩ Y = ∅. Note that τ(X) =
xn−t, τ(Y ) = yn−t, τ(X0) = x0 = E(x0), and τ(Y0) = y0 = E(y0). Also note that w2 =
∑

e⊆V1
w(e) +

∑n−t
i=1 ei. Hence

E(τ(X)) ≥ 1

2

(

w1 −
t
∑

i=1

w(vi)

)

+
3

4



w2 −
∑

e⊆V1

w(e)



 + τ(X0)

≥ 1

2
w1 +

3

4
w2 −





1

2

t
∑

i=1

w(vi) +
3

4

∑

e⊆V1

w(e)





≥ 1

2
w1 +

3

4
w2 − λ

(

1

2
t +

3

4
e(V1)

)

≥ 1

2
w1 +

3

4
w2 − λ

(

1

2
mα +

3

8
m2α

)

.

Similarly,

E(τ(Y )) ≥ 1

2
w1 +

3

4
w2 − λ

(

1

2
mα +

3

8
m2α

)

.

Next we show that τ(X) and τ(Y ) are concentrated around their respective means. Note that
changing the color of some ui would affect τ(X) and τ(Y ) by at most d(ui)λ+w(ui) ≤ (d(ui)+1)λ.
Hence by applying Lemma 2.1, we have

P (τ(X) < E(τ(X)) − z) ≤ exp

(

− z2

2λ2
∑n−t

i=1 (d(ui) + 1)2

)

≤ exp

(

− z2

2λ2
∑n−t

i=1 (d(ui) + 1) · (d(vt+1) + 1)

)

< exp

(

− z2

2λ2(1 + 2m1−α) · (2m + n − 1)

)

< exp

(

− z2

4λ22m1−α · (2m + m)

)

= exp

(

− z2

24λ2m2−α

)

.

Let z = λ
√

24 ln 2m1−α
2 . Then

P (τ(X) < E(τ(X)) − z) <
1

2
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and

P (τ(Y ) < E(τ(Y )) − z) <
1

2
.

So there exists a partition V (G) = X ∪ Y such that

τ(X) ≥ E(τ(X)) − z ≥ 1

2
w1 +

3

4
w2 + λ · o(m)

and

τ(Y ) ≥ E(τ(Y )) − z ≥ 1

2
w1 +

3

4
w2 + λ · o(m).

The o(m) term in the above expressions is

−
(

1

2
mα +

3

8
m2α +

√
24 ln 2m1−α

2

)

.

So picking α = 2/5 to minimize max{2α, 1 − α
2 }, we have

max{τ(X), τ(Y )} ≥ 1

2
w1 +

3

4
w2 + λ · O(m4/5).

When G is a hypergraph with edges of size 1 or 2, we may view G as a weighted graph with
weight function w such that w(e) = 1 for all e ∈ E(G) with |e| = 2, w(v) = 1 for all v ∈ V (G)
with {v} ∈ E(G), and w(v) = 0 for all v ∈ V (G) with {v} /∈ E(G). Theorem 2.3 then gives the
following result.

Theorem 2.4 Let G be a hypergraph with mi edges of size i, i = 1, 2. Then there is a partition

V1, V2 of V (G) such that for i = 1, 2,

d(Vi) ≥
1

2
m1 +

3

4
m2 + O(m

4/5
2 ).

As mentioned before a random bipartition shows that the expected value of d(Vi) is m1/2 +
3m2/4.

3 k-Partitions – bounding edges meeting each set

In [7], Bollobás and Scott conjecture that every graph with m edges has a partition into k sets
each of which meets at least 2m/(2k − 1) edges. Note that in any k-partition of K2k−1, one set
consists of just one vertex, which meets 2m/(2k − 1) edges; so the conjectured bound is best
possible. For large graphs, it is likely that the bound is much better: a random k-partition
V1, . . . , Vk of a graph with m edges shows that E(d(Vi)) = (2k − 1)m/k2.

For k = 2, the above conjecture is the r = 2 case of the Bollobás-Thomason conjecture on r-
uniform hypergraphs; and it follows from the fact that every graph with m edges has a bipartition
V1, V2 such that for i ∈ {1, 2}, each vertex in Vi has at least as many neighbors in V3−i as in Vi.
In this section, we prove this Bollobás-Scott conjecture for graphs when m is sufficiently large.

We use a similar approach as in the previous section, namely: First, partition an appropriate
set of vertices of lager degree, then establish a martingale process to bound expectations, and
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finally apply the Azuma-Hoeffding inequality to bound deviations. As before, we need to pick
probabilities for that process. To this end we need several lemmas. Our first lemma will be used
to take care of critical points when applying the method of Lagrange multipliers to optimize a
function.

Lemma 3.1 Let ai = a > 0 for i = 1, . . . , l, and let aj = 0 for j = l + 1, . . . , k, where k ≥ l ≥ 2.

Let δ ≥ 0 and αi =
(

∑k
j=1 aj

)

+ δ − ai. Then

1 +

k
∑

i=1

ai

αi
≥
(

δ

k
+

2k − 1

k2

k
∑

i=1

ai

)

k
∑

i=1

1

αi
.

Proof. By the assumptions of the lemma, we have αi = (l − 1)a + δ > 0 for 1 ≤ i ≤ l, and
αi = la + δ > 0 for l + 1 ≤ i ≤ k. Let

f := 1 +

k
∑

i=1

ai

αi
−
(

δ

k
+

2k − 1

k2

k
∑

i=1

ai

)

k
∑

i=1

1

αi
.

We need to prove f ≥ 0. For convenience, let δ = aε. Then ε ≥ 0 and

f = 1 +
l

l − 1 + ε
−
(

ε

k
+

2k − 1

k2
l

)(

l

l − 1 + ε
+

k − l

l + ε

)

.

A straightforward calculation shows that

(l − 1 + ε)(l + ε)f =
l

k2
(k − 1)(k − l) ≥ 0.

Hence the assertion of the lemmas holds.

Note that in the lemma below we are unable to gurantee pi ≥ 0 for all i = 1, . . . , k; and hence
these pi cannot serve as probabilities in a random process. However, this lemma is needed in
order to prove the next lemma.

Lemma 3.2 Let δ ≥ 0 and, for i = 1, . . . , k, let ai ≥ 0 and αi =
(

∑k
j=1 aj

)

+ δ− ai. Then there

exist pi, i = 1, . . . , k, such that
k
∑

i=1
pi = 1 and, for 1 ≤ i ≤ k,

αipi + ai ≥
δ

k
+

2k − 1

k2

k
∑

i=1

ai.

Proof. For convenience let fi(p1, . . . , pk) := αipi + ai, i = 1, . . . , k. If ai = 0 for i = 1, . . . , k,
then the assertion of the lemma holds by picking pi = 1/k for i = 1, . . . , k. So without loss of
generality we may assume a1 > 0.

Now assume ai = 0 for i = 2, . . . , k. Then f1 = δp1 + a1 and fi = (a1 + δ)pi for 2 ≤

i ≤ k. Setting fi = f1 for i = 2, . . . , k, we get pi =
δp1 + a1

a1 + δ
. Setting

k
∑

i=1

pi = 1, we have

p1 =
(2 − k)a1 + δ

a1 + kδ
. Hence for i = 1, . . . , k,

fi = δp1 + a1 =
(δ + a1)

2

a1 + kδ
,

9



and so,

fi −
(

δ

k
+

2k − 1

k2

k
∑

i=1

ai

)

=
(k − 1)2a2

1

(a1 + kδ)k2
≥ 0.

Therefore, we may further assume that a2 > 0. Hence αi > 0 for all i = 1, . . . , k. Setting

fi = f1 for i = 2, . . . , k, we get pi =
α1p1 + a1 − ai

αi
for i = 1, . . . , k. Requiring

k
∑

i=1

pi = 1 and

noting that ai − a1 = α1 − αi for 1 ≤ i ≤ k, we have

p1 =

1 +
k
∑

i=1

ai − a1
αi

α1

k
∑

i=1

1

αi

=

1 +
k
∑

i=1

α1 − αi
αi

α1

k
∑

i=1

1

αi

= 1 − k − 1

α1

k
∑

i=1

1

αi

.

Indeed, for j = 1, . . . , k,

pj = 1 − k − 1

αj

k
∑

i=1

1

αi

.

Note that αj + aj = αi + ai for any 1 ≤ i, j ≤ k. Hence for j = 1, 2, . . . , k, we have

fj = αjpj + aj

=

k
∑

i=1

αj+aj

αi
− (k − 1)

k
∑

i=1

1
αi

=

k
∑

i=1

αi+ai

αi
− (k − 1)

k
∑

i=1

1
αi

=

1 +
k
∑

i=1

ai

αi

k
∑

i=1

1
αi

.

Now define

f(a1, a2, . . . , ak) := 1 +

k
∑

i=1

ai

αi
−
(

δ

k
+

2k − 1

k2

k
∑

i=1

ai

)

k
∑

i=1

1

αi
.

To complete the proof of this lemma, we need to show f(a1, . . . , ak) ≥ 0.

Case 1. δ = 0.

10



Then αi+ai =
∑k

j=1 aj for i = 1, . . . , k. Set α =
∑k

j=1 aj ; then
∑k

i=1 αi = (k−1)α. Moreover,

f(a1, . . . , ak) = 1 +

k
∑

i=1

ai

αi
− (2k − 1)α

k2

k
∑

i=1

1

αi

= 1 +

k
∑

i=1

α − αi

αi
− (2k − 1)α

k2

k
∑

i=1

1

αi

=
(k − 1)2α

k2

k
∑

i=1

1

αi
− (k − 1)

≥ (k − 1)2α

k2

k2

∑k
i=1 αi

− (k − 1)

= 0.

Here the inequality follws from Cauchy-Schwarz, and the last equality follows from the fact that
∑k

i=1 αi = (k − 1)α.

Case 2. δ > 0.
Then αi > 0 for i = 1, . . . , k. (So in this case we need not require a1 > 0 and a2 > 0.) Set

α =
∑k

j=1 aj.
Let gl(a1, . . . , al) = f(a1, . . . , al, 0, . . . , 0). It then suffices to show that gl(a1, . . . , al) ≥ 0 on

the domain Dl := [0, α]l for l = 1, . . . , k.
First, we prove that for l ∈ {1, . . . , k}, gl ≥ 0 at all possible critical points of gl in Dl, subject

to
∑k

j=1 aj − α = 0. For j = 1, . . . , l,

∂gl

∂aj
= −

k
∑

i=1

ai

α2
i

+
aj

α2
j

+
1

αj
+

δ

k

(

k
∑

i=1

1

α2
i

− 1

α2
j

)

− 2k − 1

k2

(

k
∑

i=1

1

αi
−

k
∑

i=1

ai

k
∑

i=1

1

α2
i

+

k
∑

i=1

ai

α2
j

)

.

Using the method of Lagrange multipliers, we have ∂gl

∂aj
= λ for all j = 1, . . . , l. So ∂gl

∂aj
= ∂gl

∂a1
,

which gives

aj

α2
j

+
1

αj
− δ

k

1

α2
j

− 2k − 1

k2

k
∑

i=1

ai

α2
j

=
a1

α2
1

+
1

α1
− δ

k

1

α2
1

− 2k − 1

k2

k
∑

i=1

ai

α2
1

.

Since αj + aj = α1 + a1 =
∑k

i=1 ai + δ, we have

1

α2
j

(

(k − 1)2

k2

n
∑

i=1

ai +
k − 1

k
δ

)

=
1

α2
1

(

(k − 1)2

k2

n
∑

i=1

ai +
k − 1

k
δ

)

.

Hence 1/α2
j = 1/α2

1 for all j = 1, . . . , l. Therefore, αj = α1 for j = 1, . . . , l, which implies aj = a1

for j = 1, . . . , l. It follows from Lemma 3.1 that gl ≥ 0 at all possible critical points of gl in [0, α]l.
We now show that gl ≥ 0 on [0, α]l by applying induction on l. Suppose l = 1. Then α = a1.

So α1 = δ, and αi = a1 + δ for i = 2, . . . , k. Hence

g1(a1) = 1 +
a1

δ
−
(

δ

k
+

(2k − 1)a1

k2

)(

1

δ
+

k − 1

a1 + δ

)

=
(k − 1)2

k2

(

a2
1

δ(a1 + δ)

)

≥ 0.
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So we may assume l ≥ 2 and gi ≥ 0 for all i = 1, . . . , l − 1. We now show gl ≥ 0 on the
domain [0, α]l by proving it for all points in the boundary of [0, α]l (since gl ≥ 0 at all possible
critical points of gl). Let (a1, . . . , al) be in the boundary of [0, α]l. Then aj = 0 or aj = α
for some j ∈ {1, . . . , l}. Note that gl is a symmetric function. So we may assume without loss
of generality that al = 0 or a1 = α. If al = 0 then gl(a1, . . . , al) = gl−1(a1, . . . , al−1) ≥ 0 by
induction hypothesis. If a1 = α then aj = 0 for j = 2, . . . , l, and so, gl(a1, . . . , al) = g1(a1) ≥ 0.
Again, we have gl(a1, . . . , al) ≥ 0.

Note that, in the proof of Lemma 3.2, when αi > 0 for all 1 ≤ i ≤ k we have

pj = 1 − k − 1

αj

k
∑

i=1

1

αi

for j = 1, . . . , k, which may be negative. We now apply Lemma 3.2 to prove the next result which
gives the pi’s needed in a random process.

Lemma 3.3 Let δ ≥ 0. For i = 1, . . . , k, where k ≥ 3, let ai ≥ 0 and αi = (
∑k

j=1 aj) + δ − ai.

Then there exist pi ∈ [0, 1], 1 ≤ i ≤ k, such that
k
∑

i=1
pi = 1 and for 1 ≤ i ≤ k,

αipi + ai ≥
δ

k
+

1

k − 1

k
∑

i=1

ai.

Proof. If ai = 0 for 1 ≤ i ≤ k, then αi = δ for 1 ≤ i ≤ k, and it is easy to check that the assertion
of the lemma holds by taking pi = 1/k, i = 1, . . . , k. So we may assume without loss of generality
that a1 > 0. If ai = 0 for 2 ≤ i ≤ k and δ = 0, then α1 = 0 and αi = a1 for 2 ≤ i ≤ k; and the
assertion of the lemma holds by setting p1 = 0 and pi = 1

k−1 for i = 2, . . . , k. Therefore, we may
further assume that a2 > 0 or δ > 0. As a consequence, we have αi > 0 for 1 ≤ i ≤ k.

We prove the assertion of this lemma by induction on k. For 1 ≤ i ≤ k, let

fi(p1, . . . , pk) := αipi + ai.

For k = 3, it follows from Lemma 3.2 (and the remark following its proof) that there exist
p′1, p

′
2, p

′
3 such that p′1 + p′2 + p′3 = 1 and for i = 1, 2, 3,

p′i = 1 − 2

αi

3
∑

i=1

1

αj

and fi(p
′
1, p

′
2, p

′
3) ≥

δ

3
+

5

9

3
∑

i=1

ai.

If p′i ≥ 0 for i = 1, 2, 3, then the assertion of the lemma holds by taking pi := p′i, i = 1, 2, 3. So we
may assume without loss of generality that p′3 < 0, which implies a3 > α3p

′
3+a3 = f3(p

′
1, p

′
2, p

′
3) ≥

δ
3 + 5

9

3
∑

i=1
ai. By Lemma 2.2 (with n := a3 + δ), there exist p1, p2 ∈ [0, 1] such that p1 +p2 = 1 and

f1(p1, p2, 0) = (a2 + a3 + δ)p1 + a1 ≥ a3 + δ

2
+

3

4
(a1 + a2),

f2(p1, p2, 0) = (a1 + a3 + δ)p2 + a2 ≥ a3 + δ

2
+

3

4
(a1 + a2).
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Now, let p3 = 0. Then p1 + p2 + p3 = 1, pi ∈ [0, 1] for all 1 ≤ i ≤ 3, and

f1(p1, p2, p3) = α1p1 + a1 ≥ δ

3
+

1

2
(a1 + a2 + a3),

f2(p1, p2, p3) = α2p2 + a2 ≥ δ

3
+

1

2
(a1 + a2 + a3),

f3(p1, p2, p3) = a3 ≥ δ

3
+

1

2
(a1 + a2 + a3).

Hence Lemma 3.3 holds for k = 3.
Now let n ≥ 3 be an integer, and assume that the assertion of the lemma holds when k = n.

We prove the assertion of the lemma also holds when k = n + 1. By Lemma 3.2 (and the remark
following its proof), there exist p′i, 1 ≤ i ≤ n + 1, such that

∑n+1
i=1 p′i = 1 and for i = 1, . . . , n + 1,

p′i = 1 − n

αi

n+1
∑

j=1

1
αj

≤ 1,

and

fi(p
′
1, . . . , p

′
n+1) ≥

δ

n + 1
+

2n + 1

(n + 1)2

n+1
∑

i=1

ai.

If p′i ≥ 0 for 1 ≤ i ≤ n + 1, then let pi := p′i; and the lemma holds (since 2n+1
(n+1)2

> 1
n when

n ≥ 3). So we may assume without loss of generality that p′n+1 < 0. Then

an+1 > αn+1p
′
n+1 + an+1

= fn+1(p
′
1, . . . , p

′
n+1)

≥ δ

n + 1
+

2n + 1

(n + 1)2

n+1
∑

i=1

ai

≥ δ

n + 1
+

1

n

n+1
∑

i=1

ai

Let δ′ = δ + an+1. Then for 1 ≤ i ≤ n we have αi = (
∑n

j=1 aj) + δ′ − ai. Hence by the induction

hypothesis, there exist pi ∈ [0, 1], 1 ≤ i ≤ n, such that
n
∑

i=1
pi = 1 and, for i = 1, . . . , n,

αipi + ai ≥
δ′

n
+

1

n − 1

n
∑

i=1

ai

=
δ

n
+

an+1

n
+

1

n − 1

n
∑

i=1

ai

≥ δ

n + 1
+

1

n

n+1
∑

i=1

ai.
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Let pn+1 = 0. Then
n+1
∑

i=1
pi = 1 and pi ∈ [0, 1] for all 1 ≤ i ≤ n + 1. Also,

fi(p1, . . . , pn+1) ≥
δ

n + 1
+

1

n

n+1
∑

i=1

ai, for 1 ≤ i ≤ n,

fn+1(p1, . . . , pn+1) = an+1 ≥ δ

n + 1
+

1

n

n+1
∑

i=1

ai.

Hence, Lemma 3.3 holds for k = n + 1, completing the proof of this lemma.

We can now prove the following partition result on weighted graphs.

Theorem 3.4 Let k ≥ 3 be an integer, let G be a graph with m edges, and let w : V (G) ∪
E(G) → R+ such that w(e) > 0 for all e ∈ E(G). Let λ = max{w(x) : x ∈ V (G) ∪ E(G)},
w1 =

∑

v∈V (G) w(v) and w2 =
∑

e∈E(G) w(e). Then there is a partition U1, . . . , Uk of V (G) such

that for 1 ≤ i ≤ k,

τ(Ui) ≥
1

k
w1 +

1

k − 1
w2 + λ · O(m4/5).

Proof. We may assume that G is connected. We use the same notation as in the proof of Theorem
2.3. Let V (G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vn). Let V1 = {v1, . . . , vt}
with t = ⌊mα⌋, where 0 < α < 1/2; and let V2 := V (G) \ V1 = {u1, . . . , un−t} such that
e(ui, V1 ∪ {u1, . . . , ui−1}) > 0 for i = 1, . . . , n − t. Then e(V1) ≤ 1

2m2α and d(vt+1) ≤ 2m1−α.
Fix a random partition V1 = Y1∪Y2∪· · ·∪Yk and, for each i ∈ {1, . . . , k}, assign the color i to

all vertices in Yi. We extend this coloring to V (G) such that each vertex ui ∈ V2 is independently
assigned the color j with probability pi

j, where
∑k

j=1 pi
j = 1. Let Zi be the indicator random

variable of the event of coloring ui, i.e., Zi = j iff ui is colored j. Let Gi = G[V1 ∪ {u1, · · · , ui}]
for i = 1, . . . , n − t, and let G0 = G[V1]. Let X0

j = Yj and x0
j = τ(X0

j ), and for i = 1, . . . , n − t
and j = 1, . . . , k, define

Xi
j = {vertices of Gi with color j},

xi
j = τGi

(Xi
j),

∆xi
j = xi

j − xi−1
j ,

ai
j =

∑

e∈(ui,X
i−1

j )

w(e).

Note that ai
l is a random variable determined by (Z1, . . . , Zi−1). Hence, for 1 ≤ i ≤ n − t and

1 ≤ j ≤ k,

E(∆xi
j|Z1, . . . , Zi−1) = pi

j

(

k
∑

l=1

ai
l + w(ui) − ai

j

)

+ ai
j .

So

E(∆xi
j) = pi

j

(

k
∑

l=1

bi
l + w(ui) − bi

j

)

+ bi
j,
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where for 1 ≤ l ≤ k,

bi
l =

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
l .

Since ai
l is determined by (Z1, . . . , Zi−1), bi

l is determined by ps
j , 1 ≤ s ≤ i − 1 and 1 ≤ j ≤ k.

By Lemma 3.3 (with δ = w(ui)), there exist pi
j ∈ [0, 1], 1 ≤ j ≤ k, such that

∑k
j=1 pi

j = 1 and

E(∆xi
j) ≥

w(ui)

k
+

1

k − 1

k
∑

j=1

bi
j.

Clearly, each pi
j is dependent only on bi

l, 1 ≤ l ≤ k, and hence is determined (recursively) by ps
l ,

1 ≤ l ≤ k and 1 ≤ s ≤ i − 1. Note that ei :=
k
∑

j=1
ai

j =
∑

e∈(ui,Gi−1)
w(e) is the total weight of the

edges in (ui, Gi−1), which is independent of Z1, . . . , Zn−t. Thus,

E(∆xi
j) ≥

w(ui)

k
+

1

k − 1

k
∑

j=1

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
j

=
w(ui)

k
+

1

k − 1

∑

(Z1,...,Zi−1)



P(Z1, . . . , Zi−1)

k
∑

j=1

ai
j





=
w(ui)

k
+

1

k − 1

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

=
w(ui)

k
+

1

k − 1
ei.

Therfore, noting that w2 =
∑

e⊆V1
w(e) +

∑n−t
i=1 ei, we have

E(xn−t
j ) =

n−t
∑

i=1

E(∆xi
j) + E(x0

j)

≥ 1

k

n−t
∑

i=1

w(ui) +
1

k − 1

n−t
∑

i=1

ei + x0
j

≥ 1

k

(

w1 −
t
∑

i=1

w(vi)

)

+
1

k − 1



w2 −
∑

e⊆V1

w(e)





≥ 1

k
w1 +

1

k − 1
w2 −





1

k

t
∑

i=1

w(vi) +
1

k − 1

∑

e⊆V1

w(e)





≥ 1

k
w1 +

1

k − 1
w2 − λ

(

1

k
t +

1

k − 1
e(V1)

)

.

Now changing the color of ui only affects xn−t
j by at most d(ui)λ + w(ui) ≤ (d(ui) + 1)λ.

Hence, as in the proof of Theorem 2.3 we apply Lemma 2.1 to conclude that for j = 1, . . . , k,

P

(

xn−t
j

)

< E(xn−t
j ) − z ≤ exp

(

− z2

24λ2m2−α

)

.
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Pick z =
√

24 ln km1−α
2 ; then

P

(

xn−t
j < E(xn−t

j ) − z
)

< exp (− ln k) =
1

k
.

So there exists a partition V (G) = X1 ∪ X2 ∪ · · · ∪ Xk such that for j = 1, . . . , k,

τ(Xj) ≥ E(xn−t
j ) − z

≥ 1

k
w1 +

1

k − 1
w2 − λ

(

1

k
t +

1

k − 1
e(V1)

)

− z

≥ 1

k
w1 +

1

k − 1
w2 + λ · o(m),

where the o(m) term in the expression is

−
(

1

k
mα +

1

2(k − 1)
m2α +

√
24 ln km1−α

2

)

.

Picking α = 2
5 to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m

4

5 ).

Suppose G is a hypergraph whose edges have size 1 or 2. We may view G as a weighted
graph with weight function w such that w(e) = 1 for all e ∈ E(G) with |e| = 2, w(v) = 1 for all
v ∈ V (G) with {v} ∈ E(G), and w(v) = 0 for all v ∈ V (G) with {v} /∈ E(G). Theorem 3.4 then
gives the following result.

Theorem 3.5 Let k ≥ 3 be an integer and let G be a hypergraph with mi edges of size i, i = 1, 2.
Then there is a partition V1, . . . , Vk of V (G) such that for i = 1, . . . , k,

d(Vi) ≥
m1

k
+

m2

k − 1
+ O(m

4/5
2 ).

Note that if X1, . . . ,Xk is a random k-partition in a hypergraph with mi edges of size i for
i = 1, 2, then E(d(Xi)) = m1/k + (2k − 1)m2/k

2.
We have the following corollary, which establishes a conjecture of Bollobás and Scott [7] for

large graphs.

Corollary 3.6 Let G be a graph with m edges and let k ≥ 3 be an integer. Then there is an integer

f(k) such that if m ≥ f(k) then V (G) has a partition V1, . . . , Vk such that d(Vi) ≥ 2m/(2k − 1)
for i = 1, . . . , k.

Note that our proof of Theorem 3.4 gives f(k) = O(k10(log k)5/2).

4 k-Partitions – bounding edges inside each set

Bollobás and Scott [4] proved that every graph with m edges can be partitioned into k sets each
of which contains at most m/

(k+1
2

)

edges, with Kk+1 as the unique extremal graph. For large
graphs, they prove in [6] that this bound can be improved to (1 + o(1))m/k2.

Bollobás and Scott conjecture in [8] that any hypergraph with mi edges of size i, i = 1, 2,
admits a partition into k sets each of which contains at most m1/k + m2/

(k+1
2

)

+ O(1) edges.
We now prove this conjecture, using a similar approach as before. The following two lemmas will
enable us to choose appropriate probabilities in a random process.
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Lemma 4.1 Let δ ≥ 0 and, for integers k ≥ l ≥ 1, let ai = a > 0 for i = 1, . . . , l and aj = 0 for

j = l + 1, . . . , k. Suppose δ + ai > 0 for all 1 ≤ i ≤ k. Then

1
∑k

i=1
1

δ+ai

≤ δ

k
+

1

k2

k
∑

i=1

ai.

Proof. If l = k then the inequality holds with equality (both sides equal to (δ +a)/k). So we may
assume k > l. Then δ > 0, since δ + ak > 0 by assumption. Thus

∑k
i=1

1
δ+ai

= l
δ+a + k−l

δ and
∑k

i=1 ai = la. Hence

1
∑k

i=1
1

δ+ai

−
(

δ

k
+

1

k2

k
∑

i=1

ai

)

=
−l(k − l)a2

k2(kδ + (k − l)a)
≤ 0.

Thus the assertion of the lemma holds.

Lemma 4.2 Let δ ≥ 0 and let ai ≥ 0 for i = 1, . . . , k. Then there exist pi ∈ [0, 1], i = 1, . . . , k,

such that
k
∑

i=1
pi = 1 and, for 1 ≤ i ≤ k,

(δ + ai)pi ≤
δ

k
+

1

k2

k
∑

i=1

ai.

Proof. If there exists some 1 ≤ i ≤ k such that δ + ai = 0, then δ = ai = 0. In this case let pi = 1
and pj = 0 for j 6= i, 1 ≤ j ≤ k. Then (δ + ai)pi = 0 for i = 1, . . . , k; and clearly the assertion of
the lemma holds.

Therefore, we may assume that δ + ai > 0, 1 ≤ i ≤ k. Setting (δ + ai)pi = (δ + a1)p1 for

i = 2, . . . , k, we have pi = δ+a1

δ+ai
p1. Requiring

k
∑

i=1
pi = 1 we have

(δ + a1)p1

k
∑

i=1

1

δ + ai
= 1.

Hence for i = 1, . . . , k,

(δ + ai)pi =
1

k
∑

i=1

1
δ+ai

.

Let

f(a1, a2, . . . , ak) :=
1

k
∑

i=1

1
δ+ai

−
(

δ

k
+

1

k2

k
∑

i=1

ai

)

.

We need to show f ≤ 0. This is clear if ai = 0 for i = 1, . . . , k, since f(0, . . . , 0) = 0. Set
α =

∑k
j=1 aj.

Let gl(a1, . . . , al) := f(a1, . . . , al, 0, . . . , 0) for l = 1, . . . , k. We now show that gl ≤ 0 on
Dl := [0, α]l for all 1 ≤ l ≤ k; and hence f = gk ≤ 0. We apply induction on l.
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Suppose l = 1. Clearly, g1(0) = f(0, 0, . . . , 0) = 0; and if a1 = a > 0 then by Lemma 4.1,
g1(a1) = f(a1, 0, . . . , 0) ≤ 0.

Therefore, we may assume l ≥ 2. It suffices to prove gl(a1, . . . , al) ≤ 0 for all points (a1, . . . , al)
that are on the boundary of Dl or critical points of gl in Dl.

Let (a1, . . . , al) be a point on the boundary of Dl. Then there exists j ∈ {1, . . . , l} such that
aj = 0 or aj = α. Since gl is a symmetric function, we may assume al = 0 or a1 = α. If
al = 0 then gl(a1, . . . , al−1, 0) = gl−1(a1, . . . , al−1) ≤ 0, by induction hypothesis. If a1 = α then
a2 = . . . = ak = 0, and so gl(a1, . . . , al) = g1(a1) ≤ 0 by induction basis.

Hence it remains to prove gl ≤ 0 at its critical points in Dl, subject to
∑l

j=1 aj −α = 0. Note
that for all j = 1, . . . , l,

∂f

∂aj
=

1
(

k
∑

i=1

1

δ + ai

)2 · 1

(δ + aj)2
− 1

k2
.

Note that ∂gl

∂aj
is obtained from ∂f

∂aj
by setting al+1 = . . . = ak = 0. Thus, letting

∂gl

∂aj
= λ (the

Lagrange multiplier) for j = 1, . . . , l, we have for 1 ≤ s 6= t ≤ l,

1
(

k
∑

i=1

1

δ + ai

)2 · 1

(δ + as)2
− 1

k2
=

1
(

k
∑

i=1

1

δ + ai

)2 · 1

(δ + at)2
− 1

k2
.

As a consequence, (δ + as)
2 = (δ + at)

2 for 1 ≤ s 6= t ≤ l, which implies as = at. Thus, if
(a1, a2, . . . , al) is a critical point of gl in Dl, then there exists a > 0 such that ai = a > 0 for
i = 1, . . . , l. So gl ≤ 0 by Lemma 4.1.

We now prove the following partition result for weighted graphs.

Theorem 4.3 Let G be a graph with m edges, and let w : V (G) ∪ E(G) → R+ such that

w(e) > 0 for all e ∈ E(G). Let λ := max{w(x) : x ∈ V (G) ∪ E(G)}, w1 =
∑

v∈V (G) w(v) and

w2 =
∑

e∈E(G) w(e). Then for any integer k ≥ 1 there is a partition X1, . . . ,Xk of V (G) such

that for i = 1, . . . , k,

e(Xi) ≤
1

k
w1 +

1

k2
w2 + λ · O(m4/5).

Proof. We may assume that G is connected. We use the same notation as in the proof of Theorem
2.3. Let V (G) = {v1, . . . , vn} such that d(v1) ≥ d(v2) ≥ . . . ≥ d(vn). Let V1 = {v1, . . . , vt}
with t = ⌊mα⌋, where 0 < α < 1/2; and let V2 := V (G) \ V1 = {u1, . . . , un−t} such that
e(ui, V1 ∪ {u1, . . . , ui−1}) > 0 for i = 1, . . . , n − t. Then e(V1) ≤ 1

2m2α and d(vt+1) ≤ 2m1−α.
Fix a random k-partition V1 = Y1 ∪ Y2 ∪ · · · ∪ Yk, and assign each member of Yi the color

i, 1 ≤ i ≤ k. Extend this coloring to V (G), where each vertex ui ∈ V2 is independently assigned
the color j with probability pi

j, where
∑k

j=1 pi
j = 1. Let Zi denote the indicator random variable

of the event of coloring ui. Hence Zi = j iff ui is assigned the color j.
Let Gi = G[V1 ∪ {u1, · · · , ui}] for i = 1, . . . , n − t, and let G0 = G[V1]. For j = 1, . . . , k, let
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X0
j = Yj and x0

j = w(X0
j ); and for i = 1, . . . , n − t and j = 1, . . . , k, define

Xi
j = {vertices of Gi with color j},

xi
j = w(Xi

j),

∆xi
j = xi

j − xi−1
j ,

ai
j =

∑

e∈(ui,X
i−1

j )

w(e).

Note that ai
j is determined by (Z1, . . . , Zi−1). Hence for 1 ≤ i ≤ n − t and 1 ≤ j ≤ k,

E(∆xi
j|Z1, . . . , Zi−1) = (w(ui) + ai

j)p
i
j ,

and so
E(∆xi

j) = (w(ui) + bi
j)p

i
j,

where here
bi
j =

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
j .

Since ai
j is determined by (Z1, . . . , Zi−1), bi

j is determined by ps
j , 1 ≤ j ≤ k and 1 ≤ s ≤ i− 1.

Note that ei :=
k
∑

j=1
ai

j =
∑

e∈(ui,Gi−1)
w(e) > 0, which is independent of Z1, . . . , Zn−t. By Lemma

4.2, there exist pi
j ∈ [0, 1], 1 ≤ j ≤ k, such that

∑k
j=1 pi

j = 1 and, for 1 ≤ i ≤ n − t and
j = 1, . . . , k,

E(∆xi
j) ≤

w(ui)

k
+

1

k2

k
∑

j=1

bi
j

=
w(ui)

k
+

1

k2

k
∑

j=1

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)a
i
j

=
w(ui)

k
+

1

k2

∑

(Z1,...,Zi−1)



P(Z1, . . . , Zi−1)

k
∑

j=1

ai
j





=
w(ui)

k
+

1

k2

∑

(Z1,...,Zi−1)

P(Z1, . . . , Zi−1)ei

=
w(ui)

k
+

1

k2
ei.

Note that each pi
j is determined by bi

l, 1 ≤ l ≤ k; and hence each pi
j is recursively defined by
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ps
l , 1 ≤ l ≤ k and 1 ≤ s ≤ i − 1. Also note that w2 =

∑

e∈E(G0)
w(e) +

∑n−t
i=1 ei. Now

E(xn−t
j ) =

n−t
∑

i=1

E(∆xi
j) + E(x0

j)

≤ 1

k

n−t
∑

i=1

w(ui) +
1

k2

n−t
∑

i=1

ei + x0
j

≤ 1

k
w1 +

1

k2
w2 +

t
∑

i=1

w(vi) +
∑

e⊆V1

w(e)

≤ 1

k
w1 +

1

k2
w2 + λ(t + e(V1)).

Clearly, changing the color of ui affects xn−t
j by at most d(ui)λ + w(ui) ≤ (d(ui) + 1)λ. As in

the proof of Theorem 2.3, we apply Lemma 2.1 to conclude that

P

(

xn−t
j > E(xn−t

j ) + z
)

≤ exp

(

− z2

2λ2
∑n−t

i=1 (d(ui) + 1)2

)

≤ exp

(

− z2

24λ2m2−α

)

.

Let z = λ
√

24 ln km1−α
2 . Then

P

(

xn−t
j > E(xn−t

j ) + z
)

< exp(− ln k) =
1

k
.

So there exists a partition V (G) = X1 ∪ X2 ∪ · · · ∪ Xk, such that for 1 ≤ j ≤ k,

e(Xj) ≤ E(xn−t
j ) + z

≤ 1

k
w1 +

1

k2
w2 + λ (t + e(V1)) + z

≤ 1

k
w1 +

1

k2
w2 + λ · o(m).

The o(m) term in the expression is

mα +
1

2
m2α +

√
24 ln km1−α

2 .

Picking α = 2
5 to minimize max{2α, 1 − α/2}, the o(m) term becomes O(m

4

5 ).

For a hypergraph G with edges of size 1 or 2, we may view G as a weighted graph with weight
function w such that w(e) = 1 for all e ∈ E(G) with |e| = 2, w(v) = 1 for all v ∈ V (G) with
{v} ∈ E(G), and w(v) = 0 for v ∈ V (G) with {v} /∈ E(G). Then Theorem 4.3 gives the following
result, establishing a conjecture of Bollobás and Scott [8] (the case m1 = o(m2) is implied by
equation (2) in [8]).

Theorem 4.4 Let G be a hypergraph with mi edges of size i, i = 1, 2. Then for any integer

k ≥ 1, there is a partition X1, . . . ,Xk of V (G) such that for i = 1, . . . , k,

e(Xi) ≤
m1

k
+

m2

k2
+ O(m

4/5
2 ).

Note that the term m1/k + m2/k
2 is the expected value of e(Xi) if X1, . . . ,Xk is a random

partition. Bollobás and Scott further ask in [8] whether O(m
4/5
2 ) in Theorem 4.4 can be imporved

to O(
√

m1 + m2).
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